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The evolution of an ion-scale current sheet is simulated with a fully kinetic approach using values
of the ion to electron mass ratio up to mi/me = 1836. Although the lower-hybrid drift instability is
localized in the edge region, the nonlinear development strongly modifies the electron flow velocity in
the central region, which induces a bifurcation of the current density and leads to anisotropic heating
of the electron distribution. The essential physics involves a resonant scattering of crossing ion orbits
into the noncrossing regime of phase space which creates an electrostatic potential structure across
the layer. These modifications dramatically enhance the collisionless tearing mode leading to the
rapid onset of magnetic reconnection for current sheets near the critical scale.
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Current sheets with characteristic thickness on the or-
der of a thermal ion gyroradius ρi are routinely observed
in the Earth’s magnetosphere [1, 2] and within laboratory
experiments designed to examine the physics of magnetic
reconnection[3], a topic with widespread application to
space, astrophysical and laboratory plasmas. Although
current sheets are unstable to a variety of plasma insta-
bilities including collisionless tearing [4] and the lower-
hybrid drift instability [5], the relative importance of
these instabilities to the onset and development of large
scale magnetic reconnection remains controversial.

The lower-hybrid drift instability (LHDI) is driven
by the diamagnetic current in the presence of inhomo-
geneities in the density and magnetic field [6]. The LHDI
has been considered extensively as a possible candidate to
modify the reconnection physics through anomalous re-
sistivity generated by wave-particle interactions [5, 7, 8].
Unfortunately, theory predicts the fastest growing modes
with wavelength on the electron gyroscale kyρe ∼ 1 are
localized on the edge of the layer[5], while enhanced fluc-
tuations are required in the central region to produce
significant anomalous resistivity. This conclusion is sup-
ported by observations at the magnetopause [9], in the
magnetotail [10] and by laboratory experiments [11].

Based on this evidence, some researchers have con-
cluded the LHDI does not play an important role in cur-
rent sheet dynamics. However, new results from both
theory and simulation are beginning to challenge this
conclusion. In a number of simulations, a strong enhance-
ment of the central current density associated with the
LHDI is observed [12–15] and it has been suggested this
effect gives rise to the rapid onset of reconnection [14].
Most of these simulations were performed with artificial
ion to electron mass ratios mi/me ≈ 100− 256 and very
thin layers ρi/L ≈ 1.7 − 2.2, where L is the half thick-
ness of the layer. Although the simulations in Ref. [13]
considered thicker layers at realistic mass ratio, the focus
was on long wavelength effects and the spatial resolution
was insufficient to resolve the full LHDI spectrum.

The very thin layers considered in most of the simu-
lations are comparable in thickness to laboratory recon-

nection experiments [3, 16] but are considerably thin-
ner than observed in the magnetotail prior to onset. In
this regime, kinetic simulations indicate significant pen-
etration of electromagnetic fluctuations into the central
region [7, 8, 12]. An explanation for these waves was re-
cently proposed based on a new approach to the linear
stability [17] which predicts the longer wavelength LHDI
with ky

√
ρiρe ∼ 1 can penetrate into the central region

even though the fastest growing modes with kyρe ∼ 1
are confined to the edge. The required thickness for this
penetration [17] is approximately ρi/L >∼ 1.5.

In the magnetotail, the observed thickness of the cur-
rent sheet [1] is larger ρi/L <∼ 1 and it appears the LHDI
is well localized on the edge. In this work, the nonlin-
ear evolution of the LHDI is examined for this regime
using a two-dimensional (2D) kinetic approach with the
physical value of the mass ratio for a hydrogen plasma
mi/me = 1836 and fully resolving all relevant spatial
and temporal scales. The nonlinear development leads
to a rich variety of interesting new physics including a
strong bifurcation of the current density and significant
anisotropic heating of the electron distribution in the cen-
tral region. Furthermore, a simple physics model is pro-
posed which can explain both of these features. These
new results may have direct relevance in understanding
bifurcated current sheets recently observed in the mag-
netotail [18, 19]. In addition, these modifications to the
current sheet structure greatly enhance the growth rate of
the collisionless tearing mode and may play a crucial role
in determining the onset of large scale reconnection[20].

The initial configuration is a Harris sheet [21] with
magnetic field Bx = Bo tanh(z/L) and plasma current
Jy = Josech2(z/L). The initial distributions are drift-
ing Mawellians with thermal velocity vths

≡ (2Ts/ms)1/2

and uniform drift Us = 2cTs/(qsBoL) where Ts is the
temperature, ms is the mass, qs is the charge, the density
profile is n(z) ≡ no sech2 (z/L) and s = i, e for ions and
electrons. In addition, a spatially uniform background
distribution with zero drift velocity is included, since the
stability properties of the LHDI are sensitive to this fea-
ture [17]. The dimensionless equilibrium parameters are



2

ρi/L = 1, Ti/Te = 5, ωpe/Ωce = 4, nb/no = 0.02, where
ρi = vthi/Ωci is an ion gyroradius, Ωcs = eBo/(msc)
is the gyrofrequency computed from the asymptotic field
Bo, ωpe = (4πnoe

2/me)1/2 is the plasma frequency calcu-
lated from the peak density no and nb is the background
density which is loaded as a uniform Maxwellian with
temperature Tb = Te. These parameters are roughly
appropriate for conditions observed in the magnetotail
[1, 22]. Simulations were performed for two different
mass ratios: mi/me = 1836 to simulate realistic condi-
tions over a short duration and mi/me = 512 to examine
the nonlinear evolution over a longer period.

The 2D kinetic simulations are based on a well-known
explicit electromagnetic algorithm [23, 24] in which the
fields are advanced using the scalar and vector poten-
tials. Working in the Coulomb gauge, the scalar poten-
tial is computed directly from Poisson’s equation, while
the vector potential is advanced in time using a semi-
implicit method which permits the time step to exceed
the Courant limit [24]. For waves with phase veloc-
ity much less than the speed of light, this approach is
very accurate and comparisons against a fully explicit
method[23] have revealed no significant differences. The
boundary conditions for the particles and fields are peri-
odic in the y direction. Conducting boundary conditions
are imposed for the fields at the z boundaries while re-
flecting boundary conditions are used for the particles. In
both simulations, the box size is 12L× 12L and the time
step is ∆tΩce = 0.1 which fully resolves the electron mo-
tion but is approximately 6 times faster than the Courant
limit. For mi/me = 1836, the spatial grid is 5120× 5120
with 6×109 particles while for mi/me = 512, the spatial
grid is 2560× 2560 with 1.6× 109 particles.

At the physical mass ratio, the fastest growing
mode from a linear Vlasov calculation [17] has wave-
length kyρe ≈ 0.5 with real frequency ω/Ωci ≈ 27.9,
growth rate γ/Ωci ≈ 5.7 and is localized in the region
0.7 <∼ |z/L| <∼ 2. These predictions are in excellent agree-
ment with the simulation results and fluctuations are well
confined to the edge. Since the LHDI is driven by the
diamagnetic drifts, one would expect a reduction of these
drifts and consequently a reduction in the current density
in the region of LHDI activity. This expectation is con-
firmed in Fig. 1a for the simulation with mi/me = 1836.
The surprising result is the pronounced off-axis current
filaments near z/L ≈ 0.20. The modified current pro-
file is largely due to changes in the electron fluid velocity
Vey as shown in Fig 1b while changes in the ion fluid
velocity and density are relatively minor. In addition,
the electrons are heated in the direction perpendicular
to the magnetic field resulting in a non-Maxwellian dis-
tribution in the central region. A rough estimate of these
non-Maxellian features is given in terms of the electron
anisotropy Te⊥/Te‖ in Fig. 1c. However, it should be em-
phasized that a more careful examination has revealed
the electron distribution has significant non-gyotropic
features in this region. At first glance, the results in
Fig. 1 are perplexing since there is no wave activity in the

FIG. 1: Simulation results for mi/me = 1836 at time tΩci = 7
showing (a) current density Jy, (b) electron fluid velocity Vey,
(c) electron anisotropy Te⊥/Te‖ and (d) electrostatic potential
φ. Contours of each quantity are shown on the left, while the
y-average is shown on the right (red) along with the intial
profile (black). The blue line in (b) corresponds to the y-
average of the prediction for Vey in Eq. (2), while the blue
line in (c) corresponds to the anisotropy estimate in Eq. (3).

region |z/L| <∼ 0.7. Nevertheless, a fairly simple physics
model is sufficient to explain all of these results.

The constants of motion for a charged particle moving
in the equilibrium field are ε = ms(v2

z + v2
y)/2, vx and

py = msvy + qsAy/c where Ay is the vector potential
Ay = −BoL ln [cosh(z/L)] for the Harris field. Particles
with ε > p2

y/2ms traverse both sides of the current layer
and are referred to as crossing trajectories while particles
with ε < p2

y/2ms are confined to one side of the layer and
are referred to as noncrossing. The boundary between
crossing and noncrossing regions of phase space is

vy

vths

=
α

2
− 1

2α

(
vz

vths

)2

, (1)

where α = (L/ρs) ln[cosh(z/L)]. An example cross-
section of phase space is illustrated in Fig. 2, for the
region of the sheet with strong LHDI fluctuations. The
parabolic curves correspond to Eq. (1) at the spatial posi-



3

Noncrossing

Noncrossing

α/2

U

Maxwellian

Crossing

Crossing

v

i

y

vz

α

α

ky

ω

z/L=2

z/L=1

Resonant Scattering

Net Gain + + + +

Net Gain + + + +

Net Loss  − − − −

Lower−hybrid Drift Instability

y

z

FIG. 2: Cross section of phase space (top) in the vz − vy

plane illustrating a drifting Maxwellian ion distribution and
the phase space boundary in Eq. (1) for two different spatial
positions within the layer. The shaded region in the upper
figure corresponds to the approximate phase velocity of the
waves ω/ky ≈ Ui/2 which are in the proper region to res-
onantly scatter crossing ions into the noncrossing region of
phase space. This scattering process and the resulting charge
accumulation is illustrated in the lower figure.

tions z/L = 1, 2 while the concentric circles correspond to
the Maxwellian ion distribution. The phase space bound-
ary is the only feature which varies with spatial position
in Fig. 2 since both the ion drift velocity Ui and temper-
ature Ti are independent of location. The approximate
phase velocity for cold electrons ω/ky ≈ Ui/2 is shown in
the shaded region. The essential point is the phase ve-
locity is in the proper region to permit a resonant scat-
tering of ions from the crossing region of phase space
into the noncrossing region as illustrated at the bottom
of Fig. 2. Although the reverse scattering is also possi-
ble, the slope of the distribution function in the vicinity
of the resonance favors the process in Fig. 2. This type
of scattering can only occur if the spatial extent of the
crossing ion orbits δi ≈

√
2ρiL overlaps with the spatial

localization of the mode. It was recently proposed that
this type of scattering may lead to the creation of signifi-
cant shear in the ion velocity [25]. In the present context,
the resonant scattering leads to a loss of positive charge
in the center in conjunction with a gain in the edge re-
gion, and therefore gives rise to an electrostatic potential
structure across the layer as shown in Fig. 1d.

To understand the increase in the electron flow veloc-
ity, consider the electron momentum equation within the
fluid approximation. Neglecting the inertia term and us-
ing the equilibrium distribution to evaluate the pressure

tensor, the resulting electron flow velocity is

Vey ≈
Ue

1 + (nb/no) cosh2(z/L)
− c

Bx

∂φ

∂z
, (2)

The first term is the equilibrium flow while the second
term is the E×B drift induced by the electrostatic poten-
tial structure. At early times within the simulation, the
electron velocity is in excellent agreement with Eq. (2) as
shown in Fig. 1b, indicating the acceleration is a direct
result of the electrostatic potential. As the simulation
proceeds, the electron pressure tensor is strongly modi-
fied and the simple relationship in Eq. (2) is no longer
accurate. The ion flow is also modified by the electro-
static potential, but to a much smaller degree due to the
large inertia. It is important to emphasize, this physical
mechanism for electron acceleration is very different than
the results reported by Scholer [14] in which an inductive
electric field is responsible for the acceleration while the
electrostatic field is negligible. It does not appear this
difference is due to the parameter regime in Ref. [14]
since our simulations indicate the electrostatic potential
continues to play an essential role at lower mass ratio but
the bifurcated current structure is greatly diminished.

The anisotropic electron heating in the outer region
|z/L| >∼ 0.7 is a direct consequence of the LHDI due to
the electron ∇B drift resonance [6]. Clearly this mech-
anism is not relevant in the central region |z/L| < 0.7
due to the absence of fluctuations. Since the nonlinear
modification to the magnetic field occurs on the ion time
scale, one approach to explain the heating is to examine
the adiabatic invariants for the various electron orbits.
For a system with periodic motion, the action integral
taken over a period

∮
pdq is a constant of the motion,

where p and q are the generalized momentum and coor-
dinate describing the periodic motion. When a change is
imposed on the system so that the motion is no longer
exactly periodic, the integral

∮
pdq is an adiabatic invari-

ant provided that the change is slow in comparison to the
period of motion. For the case of noncrossing electrons
with helical trajectories, the well-known magnetic mo-
ment µ ≡ mv2

⊥/(2Bx) is the relevant adiabatic invariant.
This implies the perpendicular temperature is simply re-
lated to the local magnetic field

Te⊥(z, t)
Te⊥(z, t = 0)

≈ Bx(z, t)
Bx(z, t = 0)

. (3)

For the region 0.3 <∼ |z/L| <∼ 0.5 where the electron or-
bits are helical, this expression provides a good estimate
of the perpendicular heating as shown by the blue line in
Fig. 1c. In the central region |z/L| < 0.3, the electron
trajectories undergo a variety of complicated crossing or-
bits and µ is no longer the relevant invariant. Approaches
for constructing adiabatic invariants in regions of strong
gradients [26] will be examined in future work.

These results demonstrate the essential physics of the
nonlinear deformation at early time for realistic mass
ratio. This process leads to a significant increase in
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FIG. 3: Late time evolution for mi/me = 512 at tΩci = 29
showing (a) current density Jy and (b) electron anisotropy
Te⊥/Te‖. The y-averaged profiles (red) and initial current
density (black) are shown on the right.

the electron velocity in the range |z/L| <∼ 0.5 and since
the LHDI is driven by a relative drift between electrons
and ions, one would expect the spatial region of wave
activity to move inward. This in turn would lead to
more ion scattering and further enhancements to the
electrostatic potential, current bifurcation and electron
anisotropy. Unfortunately, to confirm this scenario at
realistic mass ratio is prohibitively expensive. However,
longer simulations performed with the reduced mass ra-
tio mi/me = 512 confirm this hypothesis. As shown

in Fig. 3 at time tΩci = 29, the peak current density
increases by nearly 70% while the electron anisotropy
reaches Te⊥/Te‖ ≈ 1.35 in the central region.

In summary, the LHDI has been simulated for the first
time at physically realistic mass ratio using a fully kinetic
approach which resolves all relevant scales. For the initial
sheet thickness ρi/L = 1, the modes are localized on the
edge of the layer in agreement with linear theory. Nev-
ertheless, the nonlinear evolution gives rise to a resonant
scattering of crossing ions into the noncrossing region of
phase space. This in turn produces an electrostatic po-
tential structure across the layer leading to a strong bifur-
cation of the current density and perpendicular electron
heating. The collisionless tearing mode is driven by the
gradient of the current density [4], but is also very sensi-
tive to the electron anisotropy [27, 28]. Thus the nonlin-
ear development of the LHDI can dramatically increase
the growth rate of tearing without invoking anomalous
resistivity. For the parameters in this manuscript, the
maximum tearing growth rate with isotropic electrons is
γ/Ωci ≈ 0.035 at kxL ≈ 0.45, while for Te⊥/Te‖ ≈ 1.1
the growth rate increases to γ/Ωci ≈ 2.2 with kxL ≈ 4.
Simulations indicate the rapid growth and coalescence
of small scale tearing islands can result in the onset of
large scale reconnection [20]. This mechanism is acti-
vated when the current layer approaches a critical thick-
ness ρi/L ≈ 0.5 where the crossing ion trajectories extend
into the region of LHDI fluctuations.
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